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Stokes flow past a pair of stagnant-cap bubbles 

By L. LERNERt AND J. F. HARPERS 
Mathematics Department, Victoria University of Wellington, New Zealand 

(Received 11 June 1990 and in revised form 26 February 1991) 

When gas bubbles rise in a surface-contaminated liquid, the upper parts of their 
surfaces may be almost free of contaminant and shear stress, while on the remainder 
of their surfaces there is enough contaminant to prevent tangential motion. Sadhal 
& Johnson solved the problem of Stokes flow of a uniform stream past a single 
spherical bubble. We extend their method to a single bubble in an arbitrary axially 
symmetric Stokes flow with the aid of an inversion theorem due to Harper. We also 
investigate in detail the interaction between two bubbles rising in line, and show how 
the methods can be made to deal with three or more bubbles, or a line of one or more 
bubbles rising towards a free surface. We show that a pair of bubbles will remain the 
same distance apart only if there is a certain relationship between the sizes of the 
caps on the bubbles. The cap sizes will normally be determined by convective 
diffusion of a surface-active solute from the bulk liquid in which the bubbles rise. The 
position of the lower bubble vertically under the upper one is stable to small 
horizontal displacements, but the upper bubble rises faster and so the distance apart 
gradually increases. 

1. Introduction 
The interaction of small liquid drops or bubbles rising in a viscous fluid is an area 

of fluid dynamics which has attracted much interest in the past (Clift, Grace & Weber 
1978; Harper 1972, 1983; Pruppacher & Klett 1978). It has applications in such 
areas as chemical engineering and meteorology where one deals with the motion of 
many small drops whose radii are comparable to their separation. Their interaction 
at such short separations can have consequences important to the behaviour of the 
fluid as a whole. We treat not the general problem but a very special case in which 
the underlying physics is as clear as possible : a pair of bubbles rising in a vertical line, 
with both in Savic’s stagnant-cap regime. 

In treating viscous axisymmetric flow at low Reynolds number Re, approximations 
can be made in the NavierStokes equations resulting in the Stokes differential 
equation of motion which is known to give good agreement for flows with Re 4 1. 
Stokes’ equation, with the appropriate boundary conditions, has been applied in the 
past to the motion of drops and bubbles in a viscous fluid, and their interactions have 
been calculated for a number of cases both for tangentially stress-free surfaces 
(Wacholder & Weihs 1972; Harper 1983) and for rigid surfaces (Davis et al. 1976; 
Rushton & Davies 1978). Depending on the amount of surface-active material 
(surfactant) dissolved in the fluid, either case can apply; see, for example, Harper 
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(1972,1982) and Clift et al. (1978) for reviews of the extensive literature. If surfactant 
is present, but there is not enough of it to stop surface motion on the whole bubble, 
Savic (1953) showed that it could clog a region whose shape is a spherical cap on the 
bottom of the rising bubble (the stagnant cap) while the remainder of the bubble is 
tangentially stress-free. The word ‘clog ’ is not meant to convey that surfactant 
molecules form a close-packed monolayer on the surface, only that through the 
tangential gradient of their surface concentration they create surface shear sufficient 
to prevent surface motion. 

This problem for one isolated sphere in an otherwise uniform stream has been dealt 
with theoretically by Savic (1953), Davis & Acrivos (1966), Harper (1973) and most 
recently by Sadhal & Johnson (1983, hereinafter referred to as SJ), who produced an 
exact solution, showed why the transition from free to clogged surface is very sudden 
(as had been found by Harper & Dixon (1974) for the case of a plane surface with a 
stream flowing at  high Reynolds number beneath), and concluded that it is a good 
approximation for low-Reynolds-number and high-P8clet number flows (so that 
diffusion boundary layers are thin). 

Our aim is to extend the problem to interactions of such drops or bubbles with 
arbitrary sized caps by solving it for the case of two bubbles, with equal radii, moving 
parallel to their line of centres in Stokes flow in a fluid at rest at infinity. The same 
method also deals with three or more bubbles, or with one bubble rising towards a 
plane free surface, as outlined in $3.6. We deal with a stagnant-cap bubble in any 
axisymmetric Stokes flow by writing the stream function in a Legendre series in 
spherical polar coordinates, using SJ to reduce the problem to that of a capless 
bubble in the same Stokes flow, and solving that by the inversion theorem of Harper 
(1983). We do not consider in this paper a pair of drops with non-negligible interior 
viscosity, because the analogue of Harper (1983) for capless drops would be much 
more complicated. The method of reflections then enables us to satisfy the boundary 
conditions on two bubbles. We also briefly mention a second method, which consists 
of expanding the stream function in series in bispherical coordinates. We checked 
each calculation by its agreement with the other. Another reason for doing both 
calculations is that they generalize readily in different ways: the first to more 
bubbles, the second to two drops whose interior viscosity can be comparable to that 
of the external fluid. We avoided a conventional boundary-integral method in order 
to take advantage of the precise treatment of the singularities at the edges of the caps 
in SJ. 

In $2 we set up the notation and present some preliminary results. In $ 3  we use 
the method of reflections to obtain an infinite-dimensional matrix equation for the 
solution. We show that the matrix equation can be truncated and that good 
convergence can be obtained when calculating the drag, if the ratio of bubble centre 
separation to radius is greater than 2.4. If the ratio is small enough and the caps are 
large enough, back-eddies form between the bubbles and our solution is not 
physically valid, because there are then several zones of free and clogged surface. 
Davis et aE. (1976) found that eddies appear for ratios less than 3.57 if the caps 
completely cover both bubbles; the minimum ratio for eddies to form decreases as 
the cap sizes decrease. Section 4 discusses the consequences of the stagnant caps 
being maintained by convective diffusion, including stability to small sideways 
displacement of the second bubble but instability to larger displacements. Section 5 
gives the conditions for validity of the analysis, including an example to check that 
they can all be satisfied together. In $6 we give results for the stream functions and 
forces on the bubbles as functions of their cap size and separation. We also check for 
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vertical instability by finding the relationship between the cap angles of the bubbles 
required to produce steady flow. At  least for small caps or widely separated bubbles, 
this relationship is not the one imposed by convective diffusion of the surfactant. As 
a result the second bubble rises more slowly than the first. The equal-drag 
relationship between the cap angles is also not the simple one that might have been 
expected intuitively ; in fact the difference between cap sizes possesses three extrema. 
Sections 2, 3 and parts of 6 are based on an unpublished thesis of Lerner (1985). 

2. Preliminaries 

Let x be the position vector from the centre of the first (topmost) rising bubble, 

2.1. Coordinates 

r = 1x1, p = cos8 = k . x / r ,  (1) 

where k is a unit vector pointing vertically downwards, so that (r, 0) are spherical 
polar coordinates with 8 = 0 pointing downstream. Let the vector x' = x-sk ,  so 
that x' is zero at a distance s below the centre of the first bubble, and let (r', 8') be 
spherical polar coordinates centred there, i.e. 

r' = lx'l = (r2- 2rs cos 8 + s2)+, 

p' = cos 8' = k .  x'/r', 

r' sin 8' = r sin 8, r'p' = rp - s. 

Usually the surfaces of two bubbles will be taken as r = 1, r' = 1 in what follows. 

2.2. Motion of a single bubble 
In this section we introduce the notation which we use and the SJ solution which we 
generalize. Consider the axisymmetric flow of a uniform stream of liquid of dynamic 
viscosity r] at speed U past a single spherical bubble at r = 1. The approximation of 
the bubble's surface to that of a sphere will be good if the capillary number r]U/a is 
small, i.e. the surface tension CT is high enough to dominate viscous forces, and if n 
varies only slightly around the bubble, in a sense which is made more explicit in 
$ 5  below. The surfactant accumulates at the rear of the bubble producing a stagnant 
cap of angular size a. Subtracting the flow at infinity, we get the equivalent problem 
of the rise of a spherical bubble in fluid otherwise at rest. 

SJ gave the exact solution to the above problem in terms of the usual stream 
function ly which is used to define velocity components u,,u, satisfying the 
continuity equation : 

the differential equation for Stokes flow is 
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we also have Dqjk = 0 and 

so that D2$k = 0 ,  and there is a solution 

L. Lerner and J .  F .  Harper 

D$k = (2-4k) $k  

Y =  Y,+Ux*(O,a) = YU+9(O, 1) Yv,+UX(O,O1) (9) 

to the Stokes equation, where Y, = Ur2/Il(,u) is the stream function of the uniform 
stream, 9 ( s , a )  Y, is its inverse (Harper 1983) in the sphere with centre at s and 
radius a, so that 

9(0, a )  Y(r, 0) = - (r3/a3) Y(a2/r,  O ) ,  (10) 

and X*(O,O1) = (‘?$k-ck$k),  X(O,O1)  = ‘ k ( $ k - $ k ) ,  (11) 
m m 

k-1 k-1 

where C,* = C k - & .  Although $ k ,  $k are not orthogonal with any inner product we 
find useful, they are linearly independent and we term them basis functions. We also 
define functions singular a t  r’ = 0 as 

4; = $ k ( r ’ , P f ) ,  $; = $ k ( r f , p f ) ,  

m m 

X * ( S , a )  = c (‘?$;-‘k#i)> X ( s , a )  = c c k ( $ ; - $ & ) .  
k-1 k-1 

The boundary conditions appropriate to the capped bubble are 

Y - iUr2sin20 (r+co,  0 < O < 7c) (12) 

Y=O ( r = l ,  0 ~ 8 ~ 7 ~ )  (13) 

- 0  ( r = l ,  O < t 9 < 0 1 )  
a y  _ -  
ar 

p,,=O ( r =  1, a < O < n ) ,  (15) 

where p,, = (q/sin 0) a2 Y/ar2 on the surface, q is the dynamic viscosity of the fluid 
outside the bubble, and Y = aY/ar  = 0. The coefficients c k  were obtained by SJ and 
are given by 

where 

sin (k + 2) 01 + sin (k + 1) a - sin La - ( k  + 1) Sk 

sin (k- 1) 01 
Sk = (k 2 21, k- 1 

S ,  = a. (17) 

To obtain (16), SJ used a method due to Collins (1961) for solving the system of 
dual series equations given below. We repeat it here in the form that we use. I f f (@ 
is such that f(O)/sin O is continuous on the domain [O,n], the equations 
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have the unique solution 

ck = 1 h(u) ( k  sin ( k  + 1) u+  (k+  1) sin ku) du, 

f(8) sin 8d8 
where h(u) = 

(cos 8 - cos u)f (1 + cos 8) * 
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3. Stokes flow solution for two bubbles 
3.1. Method of rejections 

In  their paper SJ showed how to reflect the uniform stream Y, = Ur2/11(p) in the 
bubble, by finding the perturbation stream function x * ( O ,  a) which must be added to 
Yu to satisfy the boundary conditions on the bubble's surface. SJ thus found the 
special case for + = Y, of the linear operator 9 ( s ,  P) which acts on a Stokes stream 
function + to give the perturbation caused by the spherical bubble of unit radius, 
centre a distance s below the origin, and cap angle /3. More precisely, let @ be the 
stream function of any axisymmetric Stokes flow with @ = 0 on the axis and no 
singularities inside or on the sphere Ix'I = 1 with centre at s and radius 1. Let be 
the stream function of the flow tending to $ at infinity past the bubble lx'l = 1 with 
cap angle 8, so that obeys the boundary conditions (12) to (15) on its surface. 
Then we need to find Y ( s , P )  where 

9 ( S , P ) @  = @ s , p - @ .  (22) 

The operator 9 of (10) is a special case of 9, as 9 ( s ,  1) = 9 ( s , O ) ,  and the 
SJ perturbation stream function for a single bubble (see equations (9), (ll)), is 
x*(O,a) = 9 ( 0 , a )  Yu. When we have found 9 we can use it to find the flow of an 
otherwise uniform stream of speed U = 1 past a pair of bubbles with equal radius 1, 
centres at  0 and s, and cap angles a,P respectively, by repeated use of the method 
of reflections, because 

'y= ~ u + x * ( O , 4 f x * ( s , P )  
+ Y ( s ,  P)  X*(O,  a) + S(0 ,a )  X*(% P) 
+ a o ,  4 a s ,  8) X * ( O ,  4 + a s ,  P)  q o ,  a) x*@, P)  
+ 9 ( S >  PI m o ,  01) a s ,  PI X*(O,  4 + a o ,  4 =%, P)  
+..., (23) 

4 X * h  8) 

where each line after the first gives the reflection in each bubble of the term in the 
line above which did not arise from a reflection in the same bubble. We may 
rearrange this series to give 

a, 

'y = 'y,+ L o  x ~ r e ~ o , ~ ~ 9 ~ s , P ~ ~ ~ ~ x * ~ O , a ~ + J ~ O , a ~ x * ~ 8 , P ~ ~ )  

+ ( 2 {-%, PI -wx . )>"{X*(S,  P) +=%a, P) X*(O,  a)}), (24) 
n-0 

where the first series has its singularities inside the top bubble r = 1, the second 
inside the second bubble r' = 1. In  the next section we obtain the stream function in 
(24) by finding vector representations for x * ( O ,  a) with respect to the q5k and @k basis 
elements and similarly for x*(s,P) with respect to the q 5 I  and vk basis elements, 
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finding the corresponding matrix representations for the differential operators 9(0, a) 
and U(s , /? ) ,  and then simplifying the summations. Of course, since the bases are of 
finite dimension, truncation to finite dimension is required, and this requires us to 
investigate convergence. 

3.2. Re$ection operators 
We can expand any solution Y to the Stokes equation which is axisymmetric, zero 
on the axis and whose velocity field tends to zero at  infinity, as a series of functions 
$k and $k of the form 

which converges for sufficiently large r .  For example the SJ solution for the reflection 
of a uniform stream in a bubble consisted of an expression of the form (25) where the 
vector coefficients were obtained by a solution of dual series equations of the type of 
(W, (19). 

Using the inner product 

in which the integral is taken around the semicircle r = 1,  - 1 < p < 1,  we have 

and we can associate an infinite vector @ with each solution of (25) as 

@ = [c,4 = [ ( C I , C Z ,  ...), (d,,d,, ... 11, (28) 

where ck = Wk y =  k(k+$) (k+  1) ($k ,DY/ / (2-4k)) ,  (29) 

dk = gk Y = k(k+$) (k+ 1) ( $ k ,  Y--DY/(2--4k)). (30) 

We also define w k ,  9; by integrals corresponding to (29), (30) with tk and $; in their 
integrands and with domains of integration around the semicircle r' = 1, - 1 < p' < 1. 
It is perhaps worth mentioning that the operator D of (6) is the same in dashed 
coordinates. Its translation invariance is obvious if i t  is written in cylindrical polar 
coordinates. 

Let [c(a),d(a)]  be the vector @ representing the SJ solution for a bubble r = 1 of 
cap angle a moving with speed U = 1. Then 

c,(a) = c,*, dk(Ol) = -ck, (31) 

as in (11)  and (16), and 

since from its definition 64 is linear. 
Since $,, and $,, satisfy D2$ = 0, so do 9$,, and 9$,,, and these functions 

can be expanded in series involving $n and $n.  Then the @ vector representing 
=%, /?) x*(O,  a) is [c(a) ,  441 4 8 ,  B), where 
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is the matrix representing Y ( s ,  p), and the submatrices A ,  6, C, D are given by 

= wk 9(s? p) $?a, 

Bkn = % 9(s, B) $?a, 

ckn = wk 9(s, B) $n, 

Dkn = %c 9(s, p) $n* 

If the two bubbles did not interact, the stream function for the flow past them could 
be represented by the following vector fb0 : 

@o = [W, 44, c(B), 401, (34) 

where the first and second pairs of terms represent the expansion coefficient in terms 
of functions centred on the first and second bubbles respectively. The actual stream 
function for interacting bubbles is given by (24) and is represented by 

where / is the unit matrix and 0 is the matrix whose elements are all equal to 0. Thus 
the method of reflections will converge if the norm llPll c 1. Since P is of infinite 
order but practical computing can only be done with finite matrices we truncate all 
series involving $k,  $k to k: < N .  The truncation of P is then of order 4N and its 
supremum norm IIP,,II must tend to llPll as N - t  00. This question is investigated 
later, in $3.3. 

3.3. Calculation of matrix elements 

In order to find P we begin with the inner products u;2$1, 

9; 9?,hl, q k  9(b1, g k  9$l. Consider a general Stokes stream function 'Yo(r, p) ,  which 
is zero on the axis except at x = p, lpl > 1, where its corresponding velocity field has 
a singularity. If Y is the stream function for the flow Yo as perturbed by the bubble 
r = 1 with gap angle a, the boundary conditions corresponding to those in $2 are 

Y+Y0 asx+p, (36) 

pre(!P) = 0 (a c 8 < K, r = l), (38) 

and the function Y can be written for r > 1 as 

where To = Yo + $4(0,0) Yo = Yo + Y ( 0 , l )  Yo, which would be the complete solution 
for a = 0 (Harper 1983). Applying the boundary conditions, we find that c k  = - d k ,  

and ck can be found from the dual series equations 

co 

C ck(2k+ l ) l k ( p )  = +pr8(Po) = 0 (01 < 8 < X ,  r = 1) .  (41) 
k-1 
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If Yo = $,, Harper’s (1983) inversion theorem gives its reflection in a capless 
bubble at r’ = 1 as 

and the dual series equations (40) and (41) are now of the form of equations (18) and 
(19) with f(e’) given by 

( 1 - / 4 / 2 ) ( 8 2 - 1 )  =-  
4(s2+2sp’+ l ) g *  

(45) 

Clearly f(13’) satisfies the conditions required in $2 because it is non-singular on 
0 < 8’ 6 n, as Is1 > 1. Then (21) gives 

sin3 8 d8 
(82+ 29 case+ 1): (COS e- c o ~ ~ ) i  (1  + cos 8)  ’ 

1 
4R 

h(u) = -- (s2 - 1) cosec (+?A)- 

and on substituting x = cos u and A = (s2 + 1)/2s we obtain 

Is+ll (.s2-l)sinu 
32h2(A + cos u ) ~  ’ 

= -  

so that the coefficients in the dual series equations (40) and (41) are given by 

du), (47) 
sgn (8) (s + 1) (g2 - 1) k sin k, 01 + k, sin La cos k, u + cos ku ( A+cosa: - kkl 1 A + cosu 

Ck = - 
8ns2 

where k, = k + 1 and Is + 11 has been replaced by (8 + 1) sgn (8) since 181 2 2 in all cases. 
In $3.4 we obtain a convergent series for the above integral. If one interchanges 
the positions of the Stokeslet and the bubble, the same equation for ck holds with s 
replaced by -s. 

i.e. 
the corresponding coefficients in (39), can be obtained from (47) and the definition of 
an inverse stream function in (10) as 

The matrix elements representing the reflection of the fist basis element 

which converges if r’ > li/sl; this includes the whole region of interest outside the 
bubble, where r’ > 1,  because Is1 > 2. 

The procedure can now be repeated to expand the reflection of 4,’ but no new 
integrals need to be done. We can write 
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whose inverse stream function is given by 

so that f(6‘) can now be written as 

This formulation allows us to use the expressions for h(u) obtained in reflecting $l. 

Comparing the above expression forf(8’) with (45) and using the fact that Y and 
(a/&) commute, we obtain 

where ck is given by (47), and the c; are the coefficients in equations (40) and (41) if 
Yo is given by (49). 

3.4. Recurrence relations 
Having found the reflection operators for $1 and q51, we construct them for $, and 
9, by the usual differentiation procedure. We have 

$n = Y n  $1  +an 4,-2, 

4 n  = Q $ 1 9  

where the differential operators Yn and 0, are defined by 

2 an-1 

(n + 1) ! asn-1, 
F, = (-  l),-l (2n- 1) -- (57) 

the differentiations of Pl(r,p) and q51(r,p) are performed at constant r’,p’, using 
equations (2)-(4), and the coefficients a, are defined by 

(n-  1) (n-2)  
n(n+ 1) 

a, = (59) 

Similarly p, = S:, @; + a ,  $a-2 where F a ( s )  = Yn( -s) except that the implied 
differentiations are now performed at constant r ,  p, and 4; = 0; 4; where 0; is to 0, 
as Fa is to F,. The multipole relations (55) ,  (56) are obviously true for n = 1 and can 
be verified for higher n by induction, using the recurrence relations for Legendre 
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polynomials. The matrix elements representing the reflection of the inverse stream 
function for each basis element are now easily obtained as 

rfl 9(s, O )  $1 = (2k-l)(n+l)!(k-l)!sk+"-' 9 (60) 
( -l)ksgn ( s ) k ( k +  1) (k+n-2)! (2%-1) 

(-l)k-lsgn(s)(k+n)! (2n-1) 

(-l)ksgn(s)(k+n)!(2n-1) 

yn%9(s30)$1 = ( 2 k + 3 )  ( n + l ) !  (k-l)!sk+fl-l ' 

(n+l)!(k-l)!s"+n+' ' s n w k 9 ( s , o ) $ ~  = 

on 9; 9 ( s ,  0) $, = 0. (63) 
To calculate the coefficients of the dual series equations for reflections of higher- 

order basis elements we need recurrence relations, which will now be given. Applying 
the operators Yn and Q to the integrals for ck given in (47), we find that if k, = k+ 1 
as before, 

tn(a) (k sin k, a+ k, sin ka) -kk, t,(u) (cos k, u + cos ku) du , 1 
(64) 

and a similar equation with o,, 0, replacing t,, Yn, where 

and O f l ( U )  = - 8 R e [ L (  3 +  
n(n+ l )  l+e-iu (s+e-iu)n 

The functions t ,  and o, behave regularly, since Is1 > 2 and the apparent singularity 
in the integrand of 0,c, at u = x is actually removable. 

In order to compute the integral in (64), we define 

eiuk du 
f ( k ,  n)  = Re (s + e-iu)fl 9 

with k and n integers. The following recurrence relations are easily confirmed: 

1 eiok n 
k (s+e-ia)fl k 

f ( k ,  n)  = -1m - - f ( k -  1, n+ l), 

from which we can prove that 

The functionf(k, n) can be evaluated for all integers k and all positive integers n by 
using these recurrence relations with the values off( - 1, n) and f ( 0 , l )  given by the 

following expressions : 1 f( - 1, n )  = L I m  
n-1 (s+e-iu 1 -  
a 1  

(s :f~ a)* f(0,l)  =---tan-' 
s s  
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The best sequence to reduce accumulated error in numerical work is to compute 
f ( k ,  1) for negative k using (70) and then compute the other terms with (68). 

The integrals in (64) can now be expressed in terms o f f ( k , n )  aa 

Itn(.) (cos k,  u+ cos ku) du 

similarly 

Ion( , )  (cos k, u+ cos ku) du 

12 8 
n(n+ 1 )  n+ 1 [ f & ,  n ) - f ( k -  1, n ) l - - [ f ( k ,  n+ l)+f( -k , ,  n+ l ) ] .  (73) = -- 

The above completes the solution for the case of two capped bubbles. It is now 
necessary to investigate the convergence of the series. 

3.5. Investigating convergence 

Since l$,J, l$,J, lvfll, lcnl are all smaller than n-i on and outside the bubbles r = 1, 
r ' =  1,  by a theorem of Stieltjes (Sansone 1959, pp. 199-200), the series for Y 
converge absolutely and uniformly if the supremum norm 11 @ll, which is the modulus 
of the numerically largest element of @, exists. From (35) 

if IlPll < 1. From (16), (31) and (34), II@oll < 4 + 7 / 1 2 ~  = 1.6867 to five figures. 
Thus the supremum norm of the solution vector exists if llP'll has a finite limit IlPll 

as N-+ 00, and IlPll < 1. The former depends on the convergence of coefficients of the 
expansion in (39). 

Using (67) and (68) we obtain the asymptotic behaviour of the intermediate 
function f ( k ,  n) as 

where d = Is1 - 1. Then from (64) we obtain to leading order in n and k 

lFack1 - 8nd-n-' (n % d ) .  (76) 

The above determines the rate of convergence of the terms dependent on the cap 
angle. In the stream function expansion these terms have added to them the 
expansion of the inverse stream function, whose asymptotic expansion we must add 
to (76) to determine the asymptotic behaviour of the stream function. 

We find, using (60)-(63), that 

where K is a constant independent of n. 
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two bubbles. The norm of A can in turn be written as 
As can be seen from (35), llPll = IlA(s, a)[[, where a is the cap angle of one of the 

I I A ( s ,  = max ( lAkfl l ,  IBknl, lckfll, IDkfll)* 
k ,  fl  

We see from (39) that the series for IJPI1 converges as least as fast as the series 
~K[16nd-fl- '+Islfl+'+(n+3)(n+2)lsl-fl-4]. If Is1 > 2.4 then an accuracy of 1% in 
((PI1 requires N - 10, and P is then truncated to order 4N. 

The actual value to which llP4Nll converges as N +  00 has unfortunately not been 
found analytically ; all that has been determined is how the series for the norm of P4N 
converges. Numerical calculations not reported in detail here have shown that the 
norm of P& and its limit for large N are indeed less than one in all cases where 181 > 2. 
This ensures that drag coefficients will be accurately found from modest values of 
N ,  but unfortunately calculating Y is more demanding. This is because the 
arguments based on the supremum norm limit the absolute error in Y, but near a 
bubble surface (and especially near a stagnation point) Y is very small, and a 
streamline plot needs small relative error. 

3.6. Extensions of the problem 

The problem above could be extended, without the need for much further calculation, 
to the case of many bubbles with different cap sizes rising in a line, or to one or more 
bubbles rising beneath a plane surface. Thus for the case of three bubbles with cap 
angles a, /3 and y and centres at x = 0, x = s1 k, x = s2 k respectively, the reflection 
matrix becomes 

(80) 
0 A(s1,P) A(s2,y)  9 1 A(O,a) 0 W 2 , y )  

A(O,a)  A(s,,P) 0 

ell = [W, 4 a L  C(BL W), w, 4 Y ) l .  

P =  ( 
and the initial SJ vector is given by 

(81) 
In the case of a bubble with its centre at r = s rising beneath a plane free surface 

8 = in, the reflection matrix is given by 

P = A(s, a) R, (82) 
where R is the representation of the operator W reflecting a general stream function 
in a plane surface, i.e. (W$) (r, ,u) = - @ ( r ,  -p ) ,  whose matrix elements are given by 

R k ,  = ( - 1 ) k 8 k t  

Rkl = (-  l )k+N dkz 
(1 < k < N ) ,  
(N < k < m). 

4. Convective diffusion 
4.1. The first bubble 

So far we have found flow patterns and drag coefficients for given cap sizes without 
worrying about whether the configuration could arise naturally in a surfactant 
solution. But both bubbles are rising in the same liquid, and the second bubble rises 
in the wake of the first. The consequences of this will now be explored. 

SJ showed that stagnant caps occur in two important situations : strong barriers 
to absorption and desorption, and high PBclet number for a soluble surfactant. We 
treat only the latter case, extending the theory of Harper (1973) as required for two 
bubbles. 
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Let I7 be the surface pressure, i.e. the difference vp-v between the surface 
tensions vp of pure solute and v of the actual solution. In  equilibrium 

I7 = R, Thc (83) 
in an ideal solution, where R, is the gas constant, T is the absolute temperature, h 
is the adsorption depth, a constant characterizing the surfactant, and c is the 
concentration of surfactant in the bulk fluid. At all points in the bulk fluid, whether 
on the surface or not, it is convenient to define I7 by (83) and work in terms of it 
instead of c .  The convective diffusion equation for steady flow can thus be written 

U * vn = K v 2 n ,  (84) 

where K is the diffusivity of the surfactant. Let the bubble’s PBclet number P e  = 
2 U a / ~  % 1 ,  where a is the radius. (The preceding Stokes flow theory was easier with 
coordinates scaled so that a = 1, but now it is better for physical dimensions to be 
included explicitly.) Diffusion will be significant only in a thin layer around the 
bubble, and (84) reduces on the free part of the surface to 

If x = l u e  sin2 0 do, 

so that x = 0 at the top stagnation point, x = x* > 0 at the cap edge, and 

y = ;(KaS)-i !P, 

an a2n 

ax ay2 , 

we find that a good approximation on the free part of the bubble is 

4-=- 

and so 17 = 17, erf ( y d ) ,  (87) 

n= nmerf[(PeU/8z*)i(Y/Ua2)]. (88) 

which at the edge of the cap is 

Here nm is the equilibrium surface pressure of the solution far from the bubbles. 
Note that 0 in this paper is the same as in SJ but is (z - 0)  in the notation of Harper 
(1973). 

On the first bubble’s cap uo = 0 approximately. Let I7 = I7* at the rear stagnation 
point, and I7 = I7Jt.9) at any position on the cap. Then the rate of strain -E  on the 
cap is a function of 0 which can be calculated from the purely viscous theory of 
previous sections and is connected to the variation of 17 through the boundary 
condition on surface shear stress 

Close to the cap the diffusion boundary-layer equation (84) simplifies (Lighthill 1950 ; 
Harper 1973) to 



180 

where Y = P and 

L. Lerner and J .  F. Harper 

X = 9 ~ ( E a ~  sin3 6); d6 > 0 l 
on the cap. Let X = X* at the rear stagnation point. As l7 % 17, on the cap (Harper 
1973), the solution of (90) throughout the diffusion boundary layer on the cap can be 
given in terms of the surface distribution nC(6) of II as 

l7 = lox G ( t )  H (  Y { X -  t}-i) dt, 

where G ( X )  = DC(6) and 

Jzm exp ( - w3) dv Jzm exp ( - w3) dw 

(92) 
H(z) = = r(8 

The function H is of course the analogue for (90) of the error-function solution of (86). 
In steady flow the total mass flux of surfactant to the bubble surface vanishes. This 

condition gives s: (al7/ar)sin6dO = 0, (Harper (1973), where al7/ar is evaluated a t  
the surface, i.e. 

the left-hand side of (93) comes from the free part of the surface and the right-hand 
side from the stagnant cap. 

For a very small cap (a  4 1) on an isolated bubble, uo = -+Usin6 on the free part, 
x* = $7, E = (4UO/xa) (a2-02)-f on the cap, and 17* = 4Uya/x  approximately 
(Harper 1973), and (93) implies that 

a = O.99954(ZZm/Uy)%(Ua/~)k, (94) 

l7*/nm = 3.9981(Uq/l7,)! (Ua/K)h = 3.9951(Ua/~)ia-i. (95) 

These equations are correct to order of magnitude even if a is not small ; the last part 
of (95) confirms that l7* is much larger than l7,, by a factor of order Pei. The 
numerical factors in (95) differ from those in Harper (1973) because he inadvertently 
used (X*)g instead of the correct (X*-X)g in his analogue of (95). Equation (3.3) of 
that paper also contained a minor typographical error, 11- = $?3rn’2s‘2 instead of the 
correct $ = $Em’sf2 on the cap. In  the present notation this is Y = $.Ea(r-a)2sini9. 

4.2. The diffuusion wake and the second bubble 
As in Harper (1974), diffusion in the stagnation regions and the wake between two 
bubbles will be negligible provided that their distance apart is much smaller than 
Peia, a condition that is easily satisfied if P e  is large. It follows that convective 
diffusion begins on the second bubble from the same surfactant distribution l7(!€‘) 
that it ended with on the first bubble. Furthermore, according to (87), the free part 
of the surface makes 17 significantly different from l7, in a region Y/Ud = O(Pe-i), 
while the cap makes it vary by the much larger amount O(l7,Pei) in the much 
smaller region Y/Uaz = O(Pe-iPe-i). This is easy to see physically from the 
condition that in steady flow the surfactant flux in the wake behind a bubble must 
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FIGURE 1.  Schematic variation of surface pressure with stream function across the 
wake of a bubble. 

be the same as that in front of it, i.e. that 1," (17-nm) d Y  be unchanged. In  the graph 
of surfactant distribution shown in figure 1, the error function profile is modified by 
a high narrow 'spike' on the wake centreline such that the total area is unchanged 
by the bubble. 

One effect of such a surfactant distribution is to stabilize a line of bubbles to small 
sideways displacements (Harper 1970). If a bubble below the first is slightly 
displaced, say to the left, its right-hand side will encounter more contaminated liquid 
of lower surface tension. Stresses will then appear around the bubble's surface 
moving liquid from right to left, and so the bubble itself will be propelled from left 
to right. Note that this effect will occur only for sideways displacement d small 
enough to keep the streamline through that bubble's top stagnation point in the 
'spike', i.e. Y = O(Ua2Pe-t), or d = O(aPe-i). For larger displacements than that, up 
to d = O(a Pe-i), the lower bubble will be in the region where li' increases away from 
the wake centreline, and an imposed displacement will tend to increase. The vertical 
configuration is therefore stable to very small sideways displacements but unstable 
to larger ones. 

A second effect (reported here for the first time) is that the first bubble brings the 
surfactant towards the wake centreline, so that the second bubble behaves as if rising 
in more contaminated fluid, with a larger stagnant cap, and it rises slower than the 
first. We now show this for the simplest special cases that reveal the phenomenon : 
two bubbles many radii apart, or closer together but with small stagnant caps. 
Because Pe B 1, the diffusion flux of surfactant onto the free part of the second 
bubble is just (x:+x*)i/z*i times the flux onto the free part of the first, where 

X: = [u,sinz6d6, 

the equivalent for the second bubble of x* for the first. Physically, the surfactant 
spike diffuses almost immediately onto the second bubble, and the error-function 
distribution then continues to broaden gradually on the second bubble from where 
it left off on the first. 
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If the bubbles are far apart or the caps are small, x* = xz approximately, and the 
surfactant flux onto the second bubble’s free part is 4 2  times that onto the first. 
Diffusion off the second bubble’s cap is found in the same way as for the first, and 
so 

where g2,X,* are the values of g ,X*  on the second bubble. Equation (97) shows that 
the second bubble rises more slowly, and the two bubbles will gradually separate. 

If, however, there are three or more bubbles in the line, purely viscous interactions 
show that the second rises faster than the first if the surfaces are either completely 
clogged (Gluckman, Pfeffer & Weinbaum 1971 ; Pruppacher & Klett 1978, p. 636) or 
completely free (Harper 1983), and these interactions decay to zero inversely as the 
distance apart. Viscous interactions between stagnant-cap bubbles have the same 
properties, but the details will not be reported here. 

The surfactant-induced interaction is different : it does not decay with separation 
until s is large, of order Pet, and its tendency is to make the lower bubbles more 
contaminated, rise slower, and so spread the line out vertically. 

5. Conditions for validity 
5.1. General 

The foregoing analysis contains a number of assumptions which must all be satisfied 
if it is to apply to real bubbles in a real fluid. First, the Reynolds and PBclet numbers 
must obey 

Re = 2Ua/u 4 1, 

Pe = 2 U a / ~  b 1. 
(98) 

(99) 

In water, typical surfactants have K of order u/2000, and so a bubble of the right size 
to have Re = 0.1 will have Pe near 200 which is hardly large enough. However, the 
situation is better in more viscous liquids, because the Sutherland-Einstein law of 
diffusion (see, for example, Psis 1982, pp. 91-92) makes UK nearly constant, and Pe 
will then be larger for the same Re. Secondly, variations in surface tension must be 
much smaller than its mean value for the surfactant solution to be ideal. The 
condition is most stringent at  rear stagnation points, where it requires 

n, Pei 4 vp. (100) 

U7/a, 4 1. (101) 

Thirdly, for the shape to be close to spherical it is also necessary that viscous stresses 
be much smaller than the excess pressure inside bubbles due to surface tension, i.e. 

In addition to these conditions, there is another more subtle one which arises from 
the surfactant spike’e effects on the front stagnation region of the second bubble. The 
extra surfactant in the spike will diffuse quickly onto this region, reduce the surface 
tension there and speed up the flow locally, as it did in the numerical work of LeVan 
& Holbrook (1989) when they calculated the effect on a single rising drop at moderate 
Re of a surfactant soluble in the dispersed phase. We need the condition that the flow 
be speeded up only slightly. 
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5.2. The second bubble's front stagnation region 
Locally we may analyse an axisymmetric stagnation region using cylindrical polar 
coordinates (w, z ) ,  where w is the distance from the axis of symmetry and z measures 
distance parallel to the axis from the stagnation point. Payne & Pel1 (1960) gave the 
linearly independent solutions of the Stokes flow equations as w2zY8, m2Y3, where Y8 
is the general solution of 

Now the stream function must obey the boundary conditions Y N Ew2z at a great 
distance, where the rate of strain E can be assumed constant in this local analysis, 
and Y = 0 on a = 0 and z = 0. Separation of variables then reveals that Y can be 
written as 

?P = Em2, { 1 + {om a-lA (A) e-A"J,(Aa) dA}, 

where J1 is a Bessel function; on the plane z = 0 this gives the tangential velocity u, 
and shear stress 7 as 

From (105), the dynamicel surface condition balancing shear stress and surface 
tension gradient gives the surface pressure on z = 0 as 

(106) 

where c1 is a constant of integration. 
Upstream, in the spike, we have 

II = ll, PeiF( YPe%/Ua2), (107) 

where F is a dimensionless function which is of order unity when its dimensionless 
argument is also of order unity, and which decays to zero at  infinity. Convective 
diffusion near the second front stagnation point is given by (86), i.e. 4all/az = 
a217/ay2, where we have locally that 

z = 1; w2u, dw 

= $!h-3m4 { 1 + 4 w 2  A-lA(A) J,(Aw) dA}, (108) 

y = t(ka3)-4 Y. (109) 

The boundary-value problem embodied in (86), (103) and (106)-( 109) is completed 
by the condition for conservation of mass of surfactant, which is 

an a 
a2 aw KW- = h-(17wu,), 
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or 

where the left-hand side of (1 10) is R, Th times the diffusion 
the right-hand side is R,Th times the surface divergence 

flux to the surface and 
of the surface flux of 

surfactant (Levich 1962 ; Harper 1972). This boundary-value problem is nonlinear 
because Y, x ,  y ,  17 and u, all depend on the unknown function A(h) ,  but we need not 
solve it in general : we only need the condition that the integral in (104) be small 
compared with 1 .  Equation ( 1  10) shows that that happens if h is sufficiently large, 
and we now show that h B a(n, /Uy)  Pe-i is large enough. 

We can estimate the left-hand side of ( 1  1 1 )  by putting I7 = 0 instead of using (106) 
as the surface boundary condition for (86). The upstream boundary condition (107) 
is expressible in terms of y as 

l7 = I7, PefF(2 d2 Pef U-iy), 
on x = 0, and ( I  1 1 )  gives 

2K'u'17m pe'J: F(2 d2 RetU-4~) erfc (yx-4) dy 
h 

nwu,  = 

on the surface y = 0 after some straightforward calculations with the standard Green 
function (Carslaw & Jaeger 1959, $2.4).  Now wu, and xi are both proportional to w2,  
and the error function in (113) decays much faster than the F term if x Q UPe-i or 
w Q aPe-h, and so 17 = O(l7, Pe-ialh) there, while if w % a Pe-h the error function 
decays more slowly, and 17 = O(l7, Pe-ia3/hw2). To assess the importance of this 
distribution of surface pressure we use an approximate form which has the correct 
asymptotic limits, is correct to order of magnitude elsewhere, and for which all the 
integrals involving Bessel functions are readily available (Babeman Manuscript 
Project 1954), namely 

c2 l7, Pe-blh lI= 
1 + w,/c; ' 

where c2 is a constant of order 1 and c3 a constant of order a Pe-h. Then (106) gives 

c, c i  17, PeGa 
A(h)  = 2Eyh =0('3 

sin2 t dt 

From this one can see that uy will always be close to its value Ew found by ignoring 
the surfactant spike if 17Pe-sa Q Eyhc,, i.e. 

hla %- (l7JUy) Pe-f. (117) 

5.3. A numerical example 
We now give an example to show that all the simplifying assumptions can indeed 
hold for the same bubbles. Consider two bubbles of radius a = 0.2 mm rising in a 
liquid with the same density as water, half the surface tension, so that rp = 
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36 nM m-l, 1000 times the viscosity at room temperature, so that v = m2 s-l, 
and the surfactant diffusivity K = 5 x m2 s-l, in agreement with the Suther- 
land-Einstein law. Liquids with properties such as these include castor oil and 
concentrated solutions of sugar or glycerin. 

A t  low Reynolds numbers U is of order ga2/3v = 1.3 mm s-l, the Hadamard- 
Rybczynski value for one bubble with no cap. In fact U is always between two 
thirds of that value (bubbles widely separated, 180" caps) and l / ln2 = 1.443 times 
it (bubbles almost touching, 0" caps; see Harper 1983). The Reynolds number Re is 
thus near 5 x 
which obeys (101). The work described in this paper is interesting if Uq/IIm is of order 
Re:, (see (94)), so that cap angles will be near neither 0" nor 180". This gives l7, of 
order 0.02 mN m-l, which satisfies (100) and requires a very dilute surfactant 
solution. Equation (117) then requires h B 2 pm, i.e. the surfactant must be much 
more strongly adsorbed in the liquid (which in practice means less soluble) than soap 
or ordinary detergents are in water. 

the PBclet number Pe is near lo5, and Uv/gp = Upv/ap = 4 x 

6. Results and discussion 
The method presented in $3  works for the entire region where the assumptions in 

our boundary value problem might have been expected to apply. The stream 
function expansion coefficients can be calculated to 5 significant figures if s > 2.1 
with the maximum dimension required being N = 20. If s < 3.57, of course, the caps 
must be sufficiently small or the eddies between the bubbles will require the 
boundary conditions to be more elaborate than those we used. 

The forces calculated for two bubbles agreed with those of a quite independent 
method (Lerner 1985) of writing the boundary-value problem in bispherical 
coordinates (Wacholder & Weihs 1972), and using Collin's (1961) general method to 
find the coefficients. It thus seems that the results can be treated with confidence. 
The method presented in detail here worked faster for the drag coefficient and is the 
only one that would apply for more than two bubbles. The method using bispherical 
coordinates needed fewer terms to give a good streamline plot and is the only one 
that would easily apply to a pair of drops whose interior viscosity was too large to 
neglect. Both methods unfortunately demand excessive computing time to find the 
velocity or shear stress on a bubble surface, and we are not yet able to present 
numerical results for these. 

The drag force on each bubble is easily calculated with the aid of Payne & Pel1 
(1960). They showed that it depends only on the term in the stream function 
expansion (25) which varies as r at infinity. In our notation their result for the drag 
force F is 

F = -4nUqac,. (118) 

FB = $na3gAp, (119) 

Since the bubbles are the same size the buoyancy force FB balancing the drag is 

where Ap is the density difference between the phases inside and outside the bubbles, 
and is close top. In the case of the motion of two capless bubbles, or two bubbles with 
180" caps, the forces experienced by each bubble are equal, by symmetry. The 
symmetry is destroyed by introducing caps. 

If the flow is to be truly steady, the separation of the bubbles must not change, so 
that their velocities must be equal. This condition constrains the cap angles. We 
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must find the cap angle on one bubble, given that on the other, so that the drag forces 
are equal, and the separation between the bubbles does not change with time. Even 
if it does, the motion may still be quasi-steady, in the sense that the timescale for the 
bubble configuration to alter significantly is much longer than the time for vorticity 
to diffuse from one bubble to the other. If so the time-independent Stokes flow theory 
still gives a good approximation to the actual flow. 

For two bubbles we calculated the equal-drag condition as follows : fix the bubble 
spacing s and the cap angle a of the upper bubble, evaluate the difference between 
the drag forces as a function of /3, the cap angle of the lower bubble, and solve for the 
/3 giving zero drag difference, using Muller's method (see, for example, Nonweiler 
1984, p. 171) if a < 150", and the slower method of bisection for 150' < a < M O O ,  

where Muller's method would not converge reliably. 
The results are shown in figure 2 for s = 3 and in figure 3 for s = 4. For all 

separations s it turns out that the upper bubble has a larger cap for small cap angles, 
up to about 30". For smaller separations the difference is larger, owing to greater 
interaction of the bubbles. This result can be qualitatively explained by noting that 
for very small caps the upper bubble's cap is in a slower flow than the lower bubble's 
cap, owing to the sheltering effect of the nearby lower bubble (see figure 4a).  The 
upper bubble thus needs to have a larger cap in order to have the same force as the 
lower bubble. However, for cap angles between 30' and 110", approximately, the 
lower bubble has the larger cap size. This can also be qualitatively explained by 
noting that for these larger cap sizes the cap on the upper bubble shelters the lower 
bubble from the flow more effectively than the free surface of the lower bubble 
shelters the upper bubble, (see figure 4b), and so the lower bubble must have a larger 
cap. Equivalently, note that the Stokes flow pattern of a uniform stream past an 
isolated bubble is symmetrical about the equatorial plane for only a = 0" or a = 
180", but in any other case the disturbance to the stream is greater below the bubble 
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FIQURE 3. Difference between cap angles for equal drag, as a function of cap angle on the 
upper bubble, for 9 = 4. 

FIQURE 4. Schematic indication of different cap sizes for equal drag on each bubble, 
for (a) small, (b) moderate and (c) large caps. 

than above it. (One might then ask why this argument does not hold for all cap sizes: 
the answer is that each bubble is not really in a uniform stream, but in the stream 
perturbed by the other bubble.) 

Beyond about 8 = 110’ the upper cap is again the larger. It now helps to consider 
small free caps as a perturbation from a state in which both bubbles have completely 
clogged surfaces (a = /3 = 180’). The upper bubble’s small free cap is in a region of 
faster flow than the lower bubble’s (figure 4c), it can be smaller and have the same 
effect on the drag, and hence the upper stagnant cap is larger. 

If the bubbles are sufficiently close and their caps sufficiently large, figure 2 would 
suggest that the caps can be of very different sizes. However figure 5, which is a plot 

m m  232 I 
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FIGURE 5. Streamline plot for a = B = No, s = 2.5, with streamlines dotted in the back-eddy. 
(The very small closed loops near the bottom of the upper bubble are numerical artefacts.) 

a 

0 
30 
60 
90 

120 
150 
180 

B 
0 

29.45 
62.09 
91.31 

118.76 
144.81 
180.00 

s 

2.0 
2.5 
2.8 
3.0 
3.2 
3.4 
3.6 

TABLE 1. Lower cap angle (in degrees) and separation s (in bubble radii) as a function of 
upper cap angle a for a pair of bubbles with incipient eddies and equal drag coefficients 

of selected streamlines for s = 2.5, a = p = QO", reminds us that in such cases there 
is at  least one closed eddy on the upper cap and the present theory would not apply. 
(Each stagnation point where the flow is towards a bubble would be in a shear-free 
region and each stagnation point where the flow is away from a bubble would be in 
a stagnant region, and the bubble surfaces would be divided into several free and 
stagnant zones.) For a range of values of a we found the values of p and s for which 
the drag coefficients were equal and eddies were about to appear (table 1).  Figure 5 
explains why the s values are given to only two significant figures: if the true eddy 
is very small it is hard to distinguish from the spurious eddies which appear on the 
upper bubble's cap and are an artefact of truncating the series (25). Figure 5 also 
shows that streamlines close to the surface are much further from it over the cap than 
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over the free part; this is of course because the velocity is zero on the cap and small 
near it. 

The first main item of new physics in this paper is the relation between the cap 
sizes a,P for equal drag, with its (at first) surprising reversals in the sign of a-p, 
which can be understood qualitatively and calculated quantitatively as shown 
above. 

The second is the surfactant-induced interaction between bubbles. If 8 is large or 
the caps are small, there is too much surfactant on the lower bubble for the equal- 
drag relation to be satisfied, so that the upper one rises faster. We conjecture that 
this will still happen if s is smaller or the caps are not small (except of course for 180" 
caps, for which the speeds are known to be equal, by symmetry about the horizontal 
plane halfway between the bubbles). To confirm (or refute) this conjecture we need 
good numerical results for the surface velocity and shear stress, which are not yet 
available. 

We are grateful to Dr John Hinch whose questions about the front stagnation 
region of the second bubble made us devise the theory of $5.2, and to the referees who 
showed us where various other parts of this paper needed clarifying. J. F. H. also 
wishes to thank the Victoria University of Wellington for research leave, and the 
Mathematical Institute, Oxford, for hospitality and facilities while this paper was 
being revised. 
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